Internationale datingsite roemenie

The general quality of the assignment is unknown, but in the (for this purpose) rather unrepresentative sample of users we considered for our own gender assignment corpus (see below), we find that about 44% of the users are assigned a gender, which is correct in about 87% of the cases.

Another system that predicts the gender for Dutch Twitter users is Tweet Genie ( that one can provide with a Twitter user name, after which the gender and age are estimated, based on the user s last 200 tweets.

2009) managed to increase the gender recognition quality to 89.2%, using sentence length, 35 non-dictionary words, and 52 slang words.

The authors do not report the set of slang words, but the non-dictionary words appear to be more related to style than to content, showing that purely linguistic behaviour can contribute information for gender recognition as well.

Two other machine learning systems, Linguistic Profiling and Ti MBL, come close to this result, at least when the input is first preprocessed with PCA. Introduction In the Netherlands, we have a rather unique resource in the form of the Twi NL data set: a daily updated collection that probably contains at least 30% of the Dutch public tweet production since 2011 (Tjong Kim Sang and van den Bosch 2013).

One gets the impression that gender recognition is more sociological than linguistic, showing what women and men were blogging about back in A later study (Goswami et al.The age component of the system is described in (Nguyen et al. The authors apply logistic and linear regression on counts of token unigrams occurring at least 10 times in their corpus.The paper does not describe the gender component, but the first author has informed us that the accuracy of the gender recognition on the basis of 200 tweets is about 87% (Nguyen, personal communication). (2014) did a crowdsourcing experiment, in which they asked human participants to guess the gender and age on the basis of 20 to 40 tweets. on this, we will still take the biological gender as the gold standard in this paper, as our eventual goal is creating metadata for the Twi NL collection. Experimental Data and Evaluation In this section, we first describe the corpus that we used in our experiments (Section 3.1).Gender recognition has also already been applied to Tweets. (2010) examined various traits of authors from India tweeting in English, combining character N-grams and sociolinguistic features like manner of laughing, honorifics, and smiley use.With lexical N-grams, they reached an accuracy of 67.7%, which the combination with the sociolinguistic features increased to 72.33%. (2011) attempted to recognize gender in tweets from a whole set of languages, using word and character N-grams as features for machine learning with Support Vector Machines (SVM), Naive Bayes and Balanced Winnow2.

Leave a Reply