Gratis sex chat nijmegen ps3 Skype sex chat video muslim girls

Their highest score when using just text features was 75.5%, testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of about 418,000 tweets). (2012) used SVMlight to classify gender on Nigerian twitter accounts, with tweets in English, with a minimum of 50 tweets.Their features were hash tags, token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count software (LIWC; (Pennebaker et al. Although LIWC appears a very interesting addition, it hardly adds anything to the classification.For gender, the system checks the profile for about 150 common male and 150 common female first names, as well as for gender related words, such as father, mother, wife and husband.If no cue is found in a user s profile, no gender is assigned.

We then experimented with several author profiling techniques, namely Support Vector Regression (as provided by LIBSVM; (Chang and Lin 2011)), Linguistic Profiling (LP; (van Halteren 2004)), and Ti MBL (Daelemans et al.Two other machine learning systems, Linguistic Profiling and Ti MBL, come close to this result, at least when the input is first preprocessed with PCA. Introduction In the Netherlands, we have a rather unique resource in the form of the Twi NL data set: a daily updated collection that probably contains at least 30% of the Dutch public tweet production since 2011 (Tjong Kim Sang and van den Bosch 2013).However, as any collection that is harvested automatically, its usability is reduced by a lack of reliable metadata.With only token unigrams, the recognition accuracy was 80.5%, while using all features together increased this only slightly to 80.6%. (2014) examined about 9 million tweets by 14,000 Twitter users tweeting in American English.They used lexical features, and present a very good breakdown of various word types.

Leave a Reply